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Local Nonlinear Problems in Beam Structures Made of Plastics
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This work brings to the forefront  local nonlinear problems that appear in junctions of beam structures made
of plastics, subjected to heavy loads. We also revealed the notions of local problems and heavy loads. These
theoretical aspects are explained with the help of two beam structures of various complexity, made of
plastic, with local problem. The results are presented as stress maps, maps of mechanical strains, charts
with the evolution of the states reached in the structure with the loading steps. We mentioned the situations
that require local study; nonlinear problems classification is presented and the methodology for nonlinear
calculus is described.
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In mechanical engineering there is a wide range of
machinery, plants, equipment, devices etc., which are
composed of parts with different geometries, from simple
to complex, which ensure strength, stability, security,
accuracy, durability etc. and are called mechanical
structures.

The mechanical structure is standard defined as a
complex system, rigorously operationally, geometrically
and mechanically defined, consisting of individual
mechanical parts.The collapse is a problem with a
pronounced local character for all kinds of mechanical
structures, whatever their structural, functional and
implementation technologies characteristics are. The
collapse is initiated at a point or a small region (compared
with the dimensions of the structure) and then expands
and spreads until the structure loses its ability to accomplish
the functional role for which it was designed. Therefore,
the local analysis is very important.

The stress state is considered to be local when the
intensity is relatively high in a small area in relation to the
structure gauge.

In some cases, when the structure has high importance
for human safety or to prevent damage, it may become
necessary to analyze the local stress, i.e. performing
calculus at a different scale. Thus, the study makes the
transition from global to local study. Modeling and analysis
of local problems differ from those used in fracture
mechanics: the local problems study is “macro” scale and
cracks in fracture mechanics are “micro” scale.

The cases where there is need for detailed calculations
are:

-behaviour under variable loads (not very high local
stresses can lead to structural failure by fatigue, as a result
of variable loads);

-endurance effects;
-determination of local stress peaks with very high

values, exceeding the limit of proportionality;
-situations when the material is fragile, or if the operating

of the structure can cause fragilization of the material, the
local analysis is mandatory in the area in which the collapse
appears to initiate.

 So, it comes to the nonlinear calculus.

Non-linearity
The finite element method is an excellent tool for the

analysis of structures with non-linear behaviour.

In the practice of FE modeling and analysis, the following
classification may be considered [1]:

- problems with physical non-linearity (of the material).
Here, Hooke’s law is replaced with a more complicated
stress – strain law, depending on the shape of the
characteristic curve of the material.

- problems with geometric non-linearity. In this category,
problems where elevated deformations are produced due
to the loads are considered. The linear elastic behaviour is
considered, but the relations between strains and
displacements and between loads and displacements are
non-linear. Also, the efforts depend on displacements and
the equilibrium equations written for the undeformed
structure do not remain valid for the deformed structure.

- problems with general non-linearity. This is the case
when physical and geometric non-linearity is superimposed.

Solving methods
The incremental method

This is also known as step-by-step method . The load is
divided in several smaller load steps or increments. Usually,
these increments are equal, but they may be unequal too.
The load grows with each step; during each increment, a
linear elastic behaviour (a constant [K] matrix) is assumed
to occur. On the next step, this matrix changes. The solution
for each step “i”, with a growth DFi of the load, is obtained
as a displacement increment Δui. These „growths” of the
displacements are cumulated in order to obtain the total
displacement for each „stage” of loading. The process
continues until the entire load is applied. The scheme is
presented in figure 1 [1, 7].

  The calculus relations are written by taking into account
the initial state of the structure, defined by the initial loads
{F0} and initial displacements {u0}. Usually, these vectors
are null, because the structure is neither loaded nor
deformed. An initial equilibrium state may be defined in
the case when initial loads or displacements exist.

Fig. 1.  Incremental
solution
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 If the total load is divided in m steps, then the total
effective load is:

{F} = {F0} + Σ {ΔFj} ,  j = 1, … , m,

where Δ represents a finite increment. After applying the i-
th increment, the load is:

{Fi} = {F0} + Σ {ΔFj} ,  j = 1, …, i,
in which {Fm} = {F}. A similar procedure is used for the
displacements. Thus:

{ui} = {u0} + Σ {Δuj} ,  j = 1,…, i.  (1)

For calculating the displacement increment, the value
of the stiffness matrix [Ki-1] at the end of the previous step
is used, that means:

[Ki -1] {Δui} = {ΔFi},  i = 1, 2, 3, …, m,

where

[Ki -1] = [Ki -1 ({ui -1} , {Fi -1})],

and [K0] is the initial stiffness matrix, calculated for the
initial geometric configuration of the structure and for the
material constants determined from the characteristic
curve at the beginning of the loading process [1, 7].

The iterative method
In this case, the structure is loaded with the entire load

in each iteration. Because an approximate, constant value
of the stiffness is considered for each iteration, the
equilibrium conditions are not fulfilled. After each iteration,
the part of the total load that does not satisfy these
conditions is calculated. This part is used in the next
iteration, in order to determine an additional increase of
the displacements. The process is repeated until the
equilibrium equations are acceptably satisfied. Essentially,
the iterative method consists of successive corrections of
the solution until the equilibrium equations under the total
load {F} are fulfilled.

If in the general case initial loads {F0} and displacements
{u0} exist, then the load for the i-th cycle of the iterative
process is calculated with the relation:

{Fi}={F} - {Fe, i-1} ,

where {F} is the total load and {Fe, i -1} is the load in
equilibrium after the previous iteration. The increase of the
displacements, calculated for the i-th step is:

[K(i)] {Δui} = {Fi}.   (2)

The total displacement after the i-th iteration is
calculated with relation (2). Finally, the load {Fe, i},
necessary for maintaining the displacements {ui} is
determined.

The iterative process is continued until the increase of
displacements or the forces that are not in equilibrium
become zero, that means {Δui} or {Fi} become null or
small enough.

About the calculus of the stiffness matrix [K(i)] from
equation (2), usually this matrix is determined for the
previous step, in the point {ui -1}, {Fi -1}, this means [K(i)] =
[K(i -1)]. It must be take into account that [K(0)] is the stiffness
matrix for the initial state of the structure, defined by the
values {F0 and {u0}.

There are different variants for the iterative method,
differing by the way of considering the stiffness matrix of
the structure [K]. In figure 2,a one shows the scheme of
the basic iterative method and in figure 2.b – a modified
variant, that uses the initial value [K(0)] for all iterations. In
the last case, a greater number of iterations is necessary,
but a greater speed of the calculus process is achieved,
because there is no need to recalculate the matrix [K] in
each iteration. The iterative method is similar to the
numerical procedures for solving non-linear equations, like
Newton or Newton – Raphson methods [1, 7].

The mixed method.
It is also called iterative in steps and represents a

combination between the iterative and the incremental
method. The scheme of the mixed method is shown in
figure 3. In this method, the load is applied incrementally,
and successive iterations are performed after each
increment. The mixed method is more efficient, but requires
a greater volume of calculations [1, 7].

Methodology of calculus
In order to perform a nonlinear analysis one must follow

the next steps:
-selecting a suitable finite element which will be used

for meshing; element choice is made depending on the
type and geometry of the structure, as well as its available
options  for post-processing the results;

-entry the material in the database of the program; the
material is usually a structural one, with nonlinear behavior,
“inelastic”. The characteristics E and ν are introduced, then
the curve is defined by a sequence of pairs (ε, σ);

-modeling of the structure is done;
-the structure is meshed; this process is done so in areas

of stress concentrators, network density is sufficiently high;
-displacement and load definition is made;

Fig. 2 Fig. 3
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0,.45) on the outside and the middle is made   of PE (SS)
with very low density (E = 172.37 MPa, ν = 0.3); the bar
section is presented in figure 5.

In the analysis no account was taken of the adhesive
layers between components. All four legs are embedded,
and on the junction of the beams four concentrated loads
of 500 N each are applied, on the vertical direction, as
shown in the model in figure 6. Loading was applied in 10
steps.

Global  equivalent von Mises stress state reached in the
structure is currently being viewed from different positions
in figure 8.a, b. In figure 8.b one can distinguish local effects
produced by application of the load.

Studying the characteristic curves of the two plastics
shown in figure 9, the structure is composed of and looking
at the detail in figure 10, we conclude that in the core
consisted of EP (SS), the stress state is minimal, and in the
tough outer layers consisting of PR-520 epoxy resin, the
stress values tend to reach the breaking limit.

A structure has a smaller or a larger number of local
problems. Each of them is unique  often even for the same
structure and requires a proper modeling and analysis. For
example, in figure 10, both in area 1 and area 2, the structure
will achieve maximum stress (65 MPa), but area 1

Fig. 4. SOLID type finite element with 20 knots

Fig. 5. Sections of the beams used

-the specific data for nonlinear analysis is introduced -
the number of loading steps (the minimum and maximum),
one can then store the final and partial solutions;

-the analysis is performed;
-results are studied with various post-processing

facilities, such as stress maps, displacement maps, charts
etc [6].

Numerical Examples
To illustrate the theoretical concepts presented in the

paper, there were chosen two structures of different
complexity, whose modeling was done with solid-type finite
elements with 20 nodes, having three degrees of freedom
per node: translations in the nodal x, y, and z directions, as
in figure 4.

The first example chosen to illustrate the need of local
analysis of the stress and strain state in a structure, consists
of two perpendicular straight beams of rectangular section,
one of the most common cases in engineering practice.
The beams are made   of a layered composite, consisting
of two layers of PR-520 epoxy resin (E = 2000 MPa, ν =

Fig. 6. The model for two crossed bars, bending

Fig. 7. Gauge of the analyzed structure
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Fig. 10. Local von Mises stress state reached in the structure in
the junction area [MPa]

Fig. 8. Global status equivalent von Mises stress [MPa]: a. top view; b. view from underneath

Fig. 9. Characteristic curves of plastic
materials used:

a. PR-520 epoxy resin;  b. EP (SS) with
very low density

represents a deterioration of the material surface as a result
of the application of loads method and in area  2, the
recorded values   of the stress are due to the concentrator
(90o junction). The problem in area 1 may be eliminated by
distribuiting the load on a larger area and the one in area 2

Fig. 11. Local specific strains state reached in the junction area [%]

by changing the local design of the junction from corner to
radius.

Figure 11 presents a detail with the mechanical strain
corresponding to the junction area illustrated in figure 10.

Another example of beam structure, made   from PR-
520 epoxy resin (E = 2000 MPa, ν= 0.45), with a complex
configuration is modeled in figure 12. The structure is a
table that has the embedded and the load consists of four
concentrated forces acting in the vertical direction each
with 2500N. Loading was applied in 10 steps. The gauge
of the structure is 2000 x 1000 x 1025 mm, corresponding
to the three directions - X, Y, Z.

If it would not be taken into account the real curve of
the material and E would be considered constant, the map
of the stress state existing in the structure, according to
the appropriate application of the last step, is shown in
figure 13.

The real global equivalent von Mises stress state in the
structure is shown in figure 14. It is found that the real

Fig. 12. The complex beam structure

a) b)



MATERIALE PLASTICE ♦ 48♦ No. 2 ♦ 2011http://www.revmaterialeplastice.ro168

maximum equivalent stress reached is 73 MPa, not 172
MPa as in the case  when E it is taken as constant.

In figure 15, there is presented a comparison between
the states reached in the structure, with each of the 10
loading steps for: the situation where E is constant and
when the real curve is taken into account.

It may be noted that each junction of the complex
structure is a particular case of local problems, as shown
in figure 16.

Fig. 15. Comparison between the states
reached in  the structure with the loading:

when E is considered constant and when the
the real curve is taken into consideration

Fig. 13. Map of the hypothetical equivalent von Mises stress
reached in the complex beam structure [MPa] if E should be

constant

Fig. 14. Map of the equivalent von Mises stress reached in
the complex beam structure [MPa]

Unlike local stress, specific strain reaches high values
only in one type of junctions of the structure, as illustrated
in figure 17. Thus, it requires a redesign of the structure and
local optimization to eliminate the identified problems.
Local optimization can be done using the substructuring
method, isolating the affected area and imposing the
appropriate conditions, taken from the global analysis of
the structure, previously performed.

Recorded displacements are very large compared with
the gauge of the structure, which makes the nonlinearity
to be mixed. These displacements are shown in figure 18.
If we look at the displacements obtained, we conclude
that we have a structure with very large displacements
compared to the gauge, so from this point of view redesign,
followed by a new analysis is needed.

Failure and fracture mechanisms for plastics in general
and in particular for the laminated composites are different
and more complex than for the ordinary homogeneous
and isotropic materials.

Fig. 16. Various local nonlinear
problems arising in the same structure
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For these reasons, modeling and analysis by calculus of
the structures made   of laminate composites and other
plastics should be made   primarily aiming to the
determining of the local stress states in areas where high
stress gradients, such as: blockings, applying points of the
loads, geometrical or other discontinuities, concentrators,
junctions etc. occur.

Conclusions
This paper presents both theoretical and practical

elements.
The theoretical part contains:
- the definitions of the local problems, nonlinearity and

local stress state;
- the explanation of the failure concept;
- the methodology that we developed for nonlinear

calculus.
Analyzing the numerical results, we conclude that:
- detection of local problems is performed in order to

optimize the structure so that the material and structure
remain in the field of the use prescribed in the design phase.
We also propose the solutions for eliminating the problems
as follows: when we have geometrical nonlinearity, we
make a global optimization of the structure; when we have
material nonlinearity, we redesign the local areas or we
optimize them using the substructuring method;

- it was proven that considering the real curve of the
material, for the same load, we obtain lower stress and
higher specific strains;

- each local problem is unique and often even for the
same structure;

Fig. 17. Local strain state that occurs in only one type of structure
areas

Fig. 18. The global state of displacements of the structure

- the collapse is a problem with a pronounced local
character for all kinds of mechanical structures, whatever
their structural, functional and implementation
technologies characteristics are.
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